I M.Tech - I Semester – Regular Examinations - MARCH - 2023

MICROWAVE SOLID STATE DEVICES (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Iviax.		
					Marks		
	UNIT-I						
1	a)	Explain the amplification phenomena of	L2	CO1	8 M		
		common emitter n-p-n transistor.					
	b)	An <i>n-Ge-p-</i> GaAs-n-GaAs heterojunction	L2	CO1	7 M		
		transistor at 300° K has the following					
		parameters: Donor density in n -Ge region:					
		$N_d = 5 \times 10^{18} \ cm^{-3}$, Acceptor density in p -					
		GaAs region: $N_a = 6 \times 10^{16} cm^{-3}$, Hole					
		lifetime: $\tau_p = 6\mu s$, Bias voltage at emitter					
		junction: $V_E = 1V$,					
		Cross section: $A=2 \times 10^{-2} cm^2$.					
		Hole mobility $\mu_p=400 \text{ cm}^2/\text{v-s}$					
		Calculate:					
		i) The built-in voltage in the p-GaAs side					
		ii) The hole diffusion constant					
		iii) The minority hole density in the n -Ge					
		region					
L	1	Dago 1 of 4	1	1	1		

Max

		iv) The minority electron density in the p-						
		GaAs region						
		v) The hole diffusion length						
		vi) The emitter-junction current						
		OR						
2	0)	Explain the principle of operation and	L2	CO1	8 M			
	a)	characteristics of microwave tunnel diode.	L	COI	0 11			
	b)		12	CO1	7 M			
	b)	Discuss the power frequency limitations of	L2	COI	/ 11/1			
		silicon bipolar transistor.						
	UNIT-II							
3	a)	Sketch the cross section of HEMT and	L3	CO2	8 M			
		discuss the processing steps for HEMT						
		device coupled FET logic circuits.		~ ~ ~				
	b)	Interpret the structure and operation of	L3	CO2	7 M			
		MESFET.						
	1	OR						
4	a)	Why GaAs MESFETs are preferred over Si	L2	CO2	7 M			
		MESFETs?						
	b)	A certain GaAs MESFET has the following	L3	CO2	8 M			
		parameters: Channel height: a=0.1µm,						
		Electron concentration: $N_d = 8 \times 10^{17} \ cm^{-3}$,						
		Relative dielectric constant: $\varepsilon_r = 13.10$.						
		Calculate the pinch-off voltage.						
	•			. I				
		UNIT-III						
5	a)	Interpret the modes of operation for Gunn	L3	CO3	8 M			
		diode.						
	•			1				

	1			,			
	b)	A n-Type GaAs Gunn Diode has the	L3	CO3	7 M		
		following parameters, Electron density:					
		$n = 10^{18} \ cm^{-3}$, Electron density at lower					
		valley: $n_l = 10^{10} \ cm^{-3}$, Electron density at					
		upper valley: $n_u = 10^8$ cm^{-3} ,					
		Temperature: $T = 300^{\circ}$ K, $\mu_l = 8000 \text{ cm}^2/\text{v}$ -					
		sec, $\mu_u = 180$ cm ² /v-sec. Calculate the					
		conductivity of the diode.					
OR							
6	a)	Outline the features of LSA diodes and InP	L2	CO3	8 M		
		diodes.					
	b)	Demonstrate the Ridley-Watkins—Hilsum	L3	CO3	7 M		
		theory.					
		UNIT-IV					
7	a)	Analyze the principle of operation of	L4	CO4	8 M		
		TRAPATT diode with neat diagram.					
	b)	An IMPATT diode has the following	L3	CO4	7 M		
		parameters: Carrier drift velocity: $v_d = 2 x$					
		10^7 cm/s, Drift-region length: $L = 6 \mu m$,					
		Maximum operating voltage: $V_{omax} = 100 V$,					
		Maximum operating current: $l_{omax} = 200$					
		mA, Efficiency: $\eta=15$ %, Breakdown					
		voltage: $V_{bd} = 90$ V, Compute: (i) The					
		maximum CW output power in watts; (ii)					
		The resonant frequency in gigahertz.					
	1	OR	l	1 1			
8	a)	What does IMPATT diode stands for and	L3	CO4	8 M		
		derive power, efficiency of the same?					
	I			1			

b)	Describe the advantages and disadvantages	L2	CO4	7 M
	of the parametric devices.			